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Abstract

Background: Bladder cancer (BC) is a life-threatening malignancy that can be successfully treated if Article History

diagnosed in its early stages. Machine learning techniques, by using large biological databases, are

suggested as important approaches for identifying accurate diagnostic biomarkers. The present study Received: 7 March 2025

aimed to introduce a simple and accurate model for the diagnosis of BC. Received in revised form: 3 May 2025

.. . . . A ted: 20 June 2025
Methods: RNA-sequencing information of 412 primary bladder tumors versus 19 normal bladder tissues AEZielr;t?l e onl inf:le

from The Cancer Genome Atlas were analyzed using the TCGAbiolinks R package to identify DOI: 10.29252/jorjanibiomed;. 13.X.X

differentially expressed genes (DEGs). Gene ontology properties and the corresponding pathways of
DEGs were investigated using the online ShinyGO tools. To develop a diagnostic model for BC, two Keywords

binary classifier machine learning algorithms, C5.0 and CHAID, were employed in three subgroups of

train, test, and validation sets using SPSS Modeler version 18.1. Their efficacy was evaluated using Bioinformatic
performance measures for binary classification. Urinary Bladder Neoplasms

. . . . . .. . Machine Learning
Results: Most of the identified DEGs were associated with microtubule organization, coagulation, and Precision Medicine
myelination. Based on the constructed models, four important RNAs (Tubulin Polymerization-
Promoting Protein: ENSG00000171368, Proteolipid Protein-1: ENSG00000123560, RP11-473E2:
ENSG00000228877, and Coagulation Factor X: ENSG00000126218) were identified as important
classifiers for diagnosis in both C5.0 and CHAID models. The CHAID model demonstrated superior
performance in the testing dataset, achieving an accuracy of 98.75%, an Fl-score of 99.36%, and an oren~| accEss
AUC 0f 99.4%. @@@@
Conclusion: According to the results, machine learning algorithms are beneficial for the diagnosis of BC il s nchp
and potentially useful for improving personalized medicine in BC patients. The developed model may W © The author(s)
serve as a non-invasive, data-driven tool to support early diagnosis and personalized treatment planning
in clinical settings. Further evaluation using laboratory tests is suggested to validate the obtained results.

Introduction

Highlights A large number of annual mortalities worldwide have been reported as
What is current knowledge? a result of different malignancies (1). Bladder cancer (BC) is a well-
known life-threatening tumor and based on its manifestations is mainly
divided into ordered categories including non-muscle-invasive (Sub-
grouped into low-grade papillary BC (Ta), carcinoma in situ (CIS), and
high-grade T1 tumors), muscle-invasive subtypes, and metastatic BC
(2). This classification is important since urologists must adopt various
treatment strategies (3). Transurethral resection of bladder tumors along
with intravesical instillation of Bacillus Calmette-Guérin (BCG) are the
two main treatment approaches for low-grade Ta, CIS, and high-grade
T1 non-muscle-invasive subtypes. Despite the risk of recurrence, these
approaches are effective in several cases. However, radical cystectomy
is preferred for patients with high-grade muscle-invasive BC. Indeed,

e  Bladder cancer is a life-threatening malignancy that can be
successfully treated if diagnosed in early stages.

e Current diagnosis of bladder cancer relies on imaging,
cystoscopy, and urinary cytology, which have limitations.

e  Many bladder cancer patients are asymptomatic in early stages,
complicating timely diagnosis.

e The Cancer Genome Atlas provides comprehensive gene
expression and clinical information for cancer research.

e Machine learning algorithms can analyze high-dimensional
transcriptomic data to identify important diagnostic biomarkers.

What is new here? the diagnostic time for BC and its progression are determining factors
e This study developed simple and accurate machine learning in the management of BC. In other words, patients diagnosed at early
models (C5.0 and CHAID) for diagnosing bladder cancer. stages have a higher chance of successful treatment (3,4).

BC is often diagnosed accidentally through urinary cytology in
bladder cancer diagnosis. patients presenting with hematuria, which is a common symptom caused
e The CHAID model showed superior performance in testing by various pathological conditions such as urinary system stones,

data, achieving 98.75% accuracy and 99.4% AUC urinary tract infections, and malignancy (5). However, most cases are
’ asymptomatic in the early stages and therefore lose the “golden time”

for optimal management. To the best of our knowledge, BC lacks any
specific biomarker for diagnosis or treatment monitoring. Most patients
are identified through imaging, cystoscopy, and urinary cytology.
However, these techniques have limitations such as low specificity and
invasiveness. Although traditional methods are widely used in clinical
practice, many have significant limitations, including insufficient

e  Four important RNAs were identified as crucial classifiers for

e Gene ontology analysis revealed that most identified
differentially expressed genes (DEGs) are associated with
mitochondrial organization, coagulation, and myelination.

e This study demonstrates the potential of machine learning
algorithms in improving personalized medicine for bladder
cancer patients.
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sensitivity for early-stage tumors, invasiveness, and dependency on
operator expertise. For instance, although urinary cytology is non-
invasive, it often fails to detect low-grade tumors, and cystoscopy is
expensive and uncomfortable for patients.

Multi-omics assessments are emerging as promising approaches for
medical studies (6,7). It is well established that changes in gene
expression occur at the onset of many physiological and pathological
conditions. This means that comparing the transcriptome of patients
with healthy individuals or conducting time-series analysis may help
identify unique patterns useful for clinical applications. However,
identifying such patterns, in addition to high costs, usually requires a
sufficient sample size, advanced equipment, and technical expertise.
Therefore, many researchers prefer not to use high-throughput
techniques.

The use of reliable data repositories, such as The Cancer Genome
Atlas (TCGA), is a valuable alternative to high-throughput laboratory
approaches (8). TCGA comprises a comprehensive repository including
gene expression data, mutation profiles, technical details, and clinical
information for each sample. Depending on the research objective, these
data allow the identification of exclusive features that, along with
laboratory validation, can be used for scientific purposes. However, a
major challenge is the high-dimensional transcriptomic data obtained
from laboratory sequencing or genomic databases like TCGA, which
often present researchers with large and complex matrices of genes and
samples (9,10). Therefore, their interpretation to identify differentially
expressed genes (DEGs) requires precise statistical software and
machine learning algorithms.

Given the limitations of conventional diagnostic approaches and the
challenges of interpreting high-dimensional data, there is an essential
need for alternative diagnostic methods that are both precise and
minimally invasive. In this context, machine learning (ML) models
trained on transcriptome data offer a promising avenue for identifying
reliable biomarkers and enhancing early detection of bladder cancer.
Advanced analytical approaches, such as ML algorithms developed
based on accurate historical data, clinical information, and high-
throughput datasets, facilitate the identification of important biomarkers
that may improve diagnostic accuracy and treatment outcomes (11,12).
ML algorithms serve as valuable toolkits for the efficient and accurate
diagnosis and therapeutic monitoring of diseases. In one ML technique-
supervised learning-a large amount of data is used as input for a
predefined target feature, training the algorithm to identify unique
patterns that predict disease outcomes or detect accurate panels of
diagnostic biomarkers (13).

Recent advancements in data mining, high-throughput repositories,
and mathematical modeling, including ML algorithms, have provided
clinicians with new perspectives for transforming personalized
medicine (14,15). C5.0 and CHAID are two well-established machine
learning classification algorithms used for diagnostic purposes. C5.0 is
recognized for high accuracy, the ability to process large datasets, and
its production of interpretable decision trees with minimal overfitting.
CHAID, on the other hand, is effective in uncovering statistically
significant relationships between variables, particularly in categorical
data analysis. Therefore, both algorithms appear suitable for gene
expression profiling and developing robust diagnostic models for
bladder cancer. These approaches leverage multi-omics data to identify
candidate biomarkers associated with enhanced diagnostic accuracy and
treatment outcomes based on individual genetic profiles (16).
Objectives
In this study, regarding the importance of transcriptome analysis, we
aimed to utilize machine learning algorithms to investigate candidate
genes that are differentially expressed in bladder cancer patients. In
clinical settings, this approach may assist physicians in personalized
medicine.

Methods

Data source and pre-processing

The gene expression profiles of 412 primary tumor tissues of BC versus
19 solid normal bladder tissues were obtained from The Cancer Genome
Atlas (TCGA) database with the specific project ID “TCGA-BLCA”.
The inclusion criteria for selecting tumor samples were as follows: (1)
Primary bladder tumor tissue samples with available RNA-sequencing
data in FPKM format, and (2) complete clinical metadata including age,
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gender, tumor stage, and survival status. Normal samples included
histologically confirmed solid normal bladder tissues from non-
cancerous individuals within the TCGA-BLCA cohort. Samples were
excluded if they were metastatic or recurrent tumor tissues. Other
exclusion criteria included incomplete expression profiles, incomplete
metadata, or missing clinical information.

Expression data analysis to identify differentially expressed genes
(DEGs) and generate data matrices was executed using R software (R
Foundation for Statistical Computing, Vienna, Austria). The dataset,
named TCGA-BLCA, was obtained using the “GDCquery” function
from the TCGAbiolinks R package in count format. After excluding
samples with incomplete metadata or missing expression count data,
missing values for categorical variables in the remaining samples were
addressed using automatic imputation in SPSS Modeler. Normalization
of expression data was performed to adjust for differences in sequencing
depth and gene length using the fragments per kilobase of transcript per
million (FPKM) method via the TCGAbiolinks package. These
preprocessing steps were implemented to enhance sample comparability
and improve the robustness of subsequent machine learning models.
Basic clinical information, including gender, age at diagnosis, clinical
stage, tumor grade, overall survival (OS) time, and survival status, was
downloaded from the TCGA portal.

Evaluation of DEGs and candidate RNAs for BC

After identifying the DEGs, further investigations were performed
regarding their corresponding proteins in terms of gene ontology (GO),
including biological process, cellular component, and molecular
function. In addition, pathway analysis to identify the most involved
cellular pathways disrupted in BC was conducted using the Kyoto
Encyclopedia of Genes and Genomes (KEGG). For gene identification,
Ensembl gene IDs were used through the online g:Profiler tool
(https://biit.cs.ut.ee/gprofiler/page/citing) (17). Both GO enrichment
and KEGG analyses were performed using ShinyGO
(http://bioinformatics.sdstate.edu/go/), a graphical online
bioinformatics tool developed at South Dakota State University (18).
Development and evaluation of ML models

Machine learning (ML) models were developed using a supervised
learning approach in IBM SPSS Modeler 18.1 software. The data were
randomly partitioned into three subgroups consisting of 70%, 20%, and
10% of the dataset. Diagnostic models for BC were constructed using
the first 70% of the data as the training set and evaluated using the
subsequent 20% as the testing set.

Feature selection was performed in three steps: Screening, ranking,
and selection. The process began with screening expression data, where
variables with low variance and non-informative features were
eliminated. In the next step, ranking was conducted based on chi-square
statistical results, and the top 150 genes were selected according to their
cumulative contribution to model performance. The threshold of 150
genes was empirically set to balance dimensionality reduction with
maintaining diagnostic accuracy.

Two widely used binary classification algorithms, C5.0 and CHAID,
were employed to establish the diagnostic models. The rationale for
selecting these algorithms was their demonstrated effectiveness in
categorizing high-dimensional datasets, which is a key characteristic of
transcriptomic data. The remaining 10% subgroup was utilized to
validate the efficacy of the constructed models using key metrics for
binary classification (19).

The C5.0 algorithm was developed with the default boosting option
enabled, with a maximum of 10 boosting trials. Pruning severity was set
at 75 to mitigate overfitting. For the CHAID model, a significance level
of 0.05 was applied for both splitting and merging criteria. The
minimum number of cases for parent and child nodes was set at 10 and
5, respectively. Missing values were handled using automatic
imputation. These configurations were chosen to maintain a balance
between model complexity and generalizability while ensuring
interpretability.

Results

The study included gene expression profiles of 412 primary tumor
tissues of BC versus 19 solid normal bladder tissues. The results of basic
clinical information, including gender, primary diagnosis, age at
diagnosis, history of prior malignancy, history of prior treatment, and
survival status, are demonstrated in Table 1.
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Table 1. Basic clinical and demographical information
patients

of bladder cancer

Feature

N (%

~

Gender

Male

303 (74.08)

Female

106 (25.92)

Primary diagnosis

Transitional cell carcinoma

343 (83.86)

Papillary transitional cell carcinoma

66 (16.14)

Age at diagnosis (Years)

34.38t0<45.5

8 (1.96)

45.51 t0 <56.63

46 (11.27)

56.64 to < 67.75

137 (33.58)

67.76 to < 78.87

143 (35.05)

78.88 to <90

74 (18.14)

Prior malignancy

Yes

109 (26.65)

No

300 (73.35)

Prior treatment

Yes

10 (2.44)

No

399 (97.56)

Survival status

Alive

227 (55.64)

Death

181 (44.36)
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Enrichment analysis and identifying biological pathways invelved
in BC

Enrichment analysis of DEGs is demonstrated in Figure 1. Based on the
results, in terms of biological processes (Figure 1A), most of the
identified genes are involved in myofibril assembly, striated muscle cell
development, regulation of smooth muscle contraction, and cellular
component assembly involved in morphogenesis. The cellular
components of most DEGs include costamere, myofilament, striated
muscle thin filaments, stress fibers, and contractile actin filament
bundles (Figure 1B). In terms of molecular function, most of the
identified DEGs contribute to tropomyosin binding, structural
constituents of muscle, vinculin binding, and calcium-activated
potassium channel activity (Figure 1C).

The results of biological pathways associated with the identified
DEGs are demonstrated in Figure 2. According to the KEGG database,
most DEGs are involved in the calcium signaling pathway, regulation of
the actin cytoskeleton, and circadian entrainment.

Differentially Expressed Genes (DEGs) analysis and feature
selection

A total of 32,765 Ensembl stable IDs were considered as input for
developing the diagnostic model. Due to the high dimensionality of the
input data, a feature selection algorithm was used. This algorithm
consists of three main steps: Screening, ranking, and selecting. The
overall workflow included removing unimportant inputs, sorting the
remaining inputs based on their importance, and selecting the top
informative features. Following the screening step, 8,729 DEGs were
ranked, and the top 150 were selected for developing the models.
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Figure 1. Gene ontology terms of DEGs in bladder cancer
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C5.0 algorithm results

The C5.0 algorithm, commonly associated with decision trees, can be
effectively employed for conducting classification and DEG-related
analyses on RNA sequencing (RNA-seq) data. This model was
developed using two important RNAs: ENSG00000171368 and
ENSG00000126218 (Figure 3). The model can be interpreted as
follows: If the expression level of ENSG00000171368 < 4.066, the
model diagnoses the sample as primary tumor. Otherwise, the
expression level of ENSG00000126218 is considered. Diagnosis of BC
is possible when ENSG00000171368 < 4.066 or when
ENSG00000171368 > 4.066 along with ENSG00000126218 < 1.0601.
The confusion matrix for the developed C5.0 model is represented in
Table 2.

Category £ nf:
Primary Tumor 95.752 293
| Solid Tissue Mormal _ 4.248 13}
i 100.000 306
................................ =l
ENSG00000171368_12

<= 4‘DEE =4 066
Node 1 MNode 2
Category % n Category % n
Primary Tumaor 99.308 287 Primary Tumaor 35294 6
B Solid Tissue Mormal 0692 2 ¥ Solid Tissue Normal 64.706 11
Total 94.444 289 Total 5556 17
=
EMSG00000126218_12
==1.601 =1.601
Node 3 MNode 4
Category % n Category % n
Primary Tumor 100000 6 Primary Tumor 0000 O
¥ Solid Tissue Marmal 0000 0 B Solid Tissue Mormal 100.000 11
Total 1.961 6 Total 3.595 11

Figure 3. Schematic diagram of the C5.0 algorithm

CHALID algorithm results

Chi-squared Automatic Interaction Detector (CHAID) is a decision-tree
algorithm particularly useful for analyzing RNA-seq data and
performing classification tasks in bioinformatics. This methodology
employs significance testing using chi-square statistics to establish
relationships between the dependent variable and independent variables
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by creating appropriate data splits. The CHAID model was developed
using  two  important RNAs:  ENSG00000123560  and
ENSG00000228877 (Figure 4). It can be interpreted as follows: If
ENSG00000123560 < 0.473, the model diagnoses the sample as
primary tumor. Otherwise, the expression level of ENSG00000228877
must be considered. Diagnosis of BC is possible when
ENSG00000123560 < 0.473 or when ENSG00000123560 > 0.473
along with ENSG00000228877 < 0.264. The confusion matrix for the
developed CHAID model is represented in Table 2.

The efficacy of the developed models for the diagnosis of BC was
assessed using key metrics for binary classification. The evaluation
metrics for training, testing, and validation datasets are shown in Table
3.

For the diagnosis of bladder cancer, it is essential to employ a
method with high sensitivity to ensure detection at early stages and
minimize false-negative results. High specificity is also important to
reduce false positives and avoid unnecessary invasive interventions.
Accuracy above 95% is generally considered ideal for clinical decision-
making.

The observed metrics in both models suggest strong diagnostic
potential, with CHAID showing particularly robust generalizability in
the validation phase. In the training dataset, both C5.0 and CHAID
models demonstrated good performance across all evaluation metrics.
Although C5.0 demonstrated slightly higher sensitivity, accuracy, MCC,
and no false negatives-indicating better diagnostic efficacy-the CHAID
model performed better in testing and validation analyses, ultimately
achieving 100% sensitivity and specificity with zero false results in the
validation dataset.

AROC curve is useful for interpreting and evaluating the diagnostic
performance of models. The overall accuracy, sensitivity, and specificity
of the C5.0 model, along with its corresponding ROC curve, are
represented in Figure 5A. Based on the figure, the C5.0 model
demonstrates strong performance with accuracy = 98.61%, sensitivity =
99.51%, and specificity = 78.94%, with only a small proportion of false
results. The CHAID model achieved accuracy = 99.01%, sensitivity =
99.76%, and specificity = 84.21% (Figure 5B).

In general, both models performed well in the diagnosis of BC.
Based on the models, four RNAs - ENSG00000171368,
ENSG00000126218, ENSG00000123560, and ENSG00000228877 -
were identified as important diagnostic classifiers for bladder cancer.

Table 2. The confusion matrix for all training, test, and validation data

Dataset Tissue type CHAID & Total
P Primary tumor Solid normal tissue Primary tumor Solid normal tissue
Train Primary tumor 292 1 293 0 293
Solid normal tissue 2 11 2 11 13
Test Primary tumor 78 0 76 2 78
Solid normal tissue 1 1 1 1 2
L Primary tumor 41 0 41 0 41
Validation ™o 4 ormal tissue 0 4 1 3 4
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Figure 4. Schematic diagram for the CHAID algorithm
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Table 3. The evaluation metrics for data mining models
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Training data

Measure CHAID C5.0
Sensitivity 99.66 1.00
Specificity 84.62 84.62
False negative rate 0.34 0.00
False positive rate 15.38 15.38
Negative predictive value 91.67 1.00
Positive predictive value 99.32 99.32
Accuracy 99.02 99.35
F1 score 99.49 99.66
Matthew’s correlation coefficient 87.57 91.67
Testing data
Sensitivity 100.00 97.44
Specificity 50.00 50.00
False negative rate 0.00 2.56
False positive rate 50.00 50.00
Negative predictive value 100.00 3333
Positive predictive value 98.73 98.70
Accuracy 98.75 96.25
F1 score 99.36 98.06
Matthew’s correlation coefficient 70.26 38.98
Validation data
Sensitivity 100.00 100.00
Specificity 100.00 75.00
False negative rate 0.00 0.00
False positive rate 0.00 0.25
Negative predictive value 100.00 100.00
Positive predictive value 100.00 97.62
Accuracy 100.00 97.78
F1 score 100.00 98.80
Matthew’s correlation coefficient 100.00 85.57
A)C5.0
Ry — Summary of statistics Points for plotting
3 ] I —
,E 08 — Number of cases 431 FP rate TP rate
n
5 08 Number of correct 425 0.0000 0.0000
0
o 04 Accuracy (%) 98.61 0.0000 0.0000
8
E 0. Sensitivity (%) 99.51 0.0049 0.7895
-
o Specificity (%) 78.94 0.9782 1.0000
00 02 04 08 08 10 Positi L 5 i i
FP Rate (1- Specificity) ositive case missing .0000 .0000
Negative case missing 4
B) CHAID
10 = Summary of statistics Points for plotting
g 08 Number of cases 431 FP rate TP rate
B
§ 06 Number of correct 427 0.0000 0.0000
n
e Accuracy 99.01 0.0000 0.0000
L]
14
& 0. Sensitivity 99.76 0.0024 0.8421
0o Specificity 84.21 0.051 1.0000
00 02 04 06 08 1.0 . e
FP Rate (1- Specificity) Positive case missing 1 1.0000 1.0000
Negative case missing 3

Figure 5. ROC curve information for C5.0 and CHAID models
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Discussion

The present research aimed to improve diagnostic accuracy and
personalized medicine by identifying differentially expressed genes
(DEGs) that can serve as biomarkers for BC. Gene expression data were
obtained from The Cancer Genome Atlas (TCGA) database and
evaluated using supervised machine learning (ML) algorithms. The
results indicated that both the C5.0 and CHAID models performed well
in diagnosing BC, with the C5.0 model showing slightly better
performance in the training data and the CHAID model performing
better in the testing and validation phases. The CHAID model achieved
100% sensitivity and specificity in the validation data, with no false
results. The study identified four important RNAs (ENSG00000171368,
ENSG00000126218, ENSG00000123560, and ENSG00000228877)
that are crucial for BC diagnosis.

Tubulin polymerization promoting protein (TPPP),
ENSG00000171368, also known as p25, is one of the identified
important classifiers in the diagnosis of BC (20). In terms of gene
ontology, TPPP is enriched in the nucleus, cytoskeleton, microtubules,
and mitotic spindles, and it exhibits metal ion binding, protein
dimerization, and GTPase activities, as well as microtubule and tubulin
formation. It encompasses various biological processes such as
microtubule organization, cell proliferation, and regulation of protein-
containing complex assembly. According to previous studies, TPPP is
important in several conditions, including colorectal cancer
development, oral squamous cell carcinoma, neurodegenerative
diseases, oligodendrocyte differentiation, microtubule dysfunction in
cystic fibrosis, and multiple sclerosis (21,22). Its importance in
colorectal cancer progression is related to promoting cell proliferation,
migration, and invasion. However, we could not find any previous study
focusing on the expression changes of TPPP in bladder cancer.

Coagulation factor X, ENSG00000126218, encoded by the F10
gene, is another important classifier identified for BC diagnosis. In
terms of gene ontology, coagulation factor X is involved in biological
processes associated with the coagulation system, including regulation
of blood coagulation and hemostasis. It is located in the extracellular
space and blood microparticles and is functionally important in serine-
type endopeptidase activity, calcium ion binding, and vitamin K
binding. The gene encodes a serine protease that plays a crucial role in
the coagulation cascade and hemostasis. Upon activation, it converts
prothrombin to thrombin, which helps form fibrin clots to stop bleeding.
We did not find any previous research indicating a direct association
between expression levels of F10 and bladder cancer. A probable link
between coagulation factors and cancer is the ability of cancer cells to
induce a procoagulant state, resulting in activation of the coagulation
cascade, which may support tumor spread and metastasis. A study on
BC patients reported elevated fibrinogen levels compared to healthy
individuals; suggesting that evaluating coagulation factors may
potentially serve as screening or prognostic markers in cancer research
(23).

Proteolipid Protein 1 (PLP1), also known as GPM6C and SPG2, is
primarily known for its role in the central nervous system, particularly
in myelination and acute myeloid leukemia (24). It is encoded by the
PLP1 gene on the X chromosome (ENSG00000123560) and is one of
the important classifiers identified in this study. In the context of bladder
cancer, PLP1 is not typically investigated, however, a possible
association with BC has been reported through bioinformatic analysis
(25). The other important classifier identified is ENSG00000228877,
also known as RP11-473E2. It refers to a long intergenic non-coding
RNA whose functional role has not yet been fully identified.

Although the diagnostic models developed in this research
demonstrated excellent performance metrics, it is important to
acknowledge that these findings are exclusively based on in silico
analyses and computational modeling using publicly available
transcriptomic data. We did not validate these results through wet-lab or
clinical experiments to confirm the biological relevance of the identified
biomarkers in bladder cancer patients. However, this limitation does not
undermine the robustness of our computational findings, rather, it
highlights the need for future studies using experimental techniques.
Further investigation will enhance our understanding across different
pathological and physiological contexts.
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Conclusion

In conclusion, the potential application of ML algorithms in identifying
DEGs for BC diagnosis was investigated in this manuscript, which may
contribute to better management and treatment outcomes for patients.
Further investigations through laboratory validation of the results will
provide deeper insights into the diagnosis of bladder cancer.
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