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Introduction 

A large number of annual mortalities worldwide have been reported as 

a result of different malignancies (1). Bladder cancer (BC) is a well-

known life-threatening tumor and based on its manifestations is mainly 

divided into ordered categories including non-muscle-invasive (Sub-

grouped into low-grade papillary BC (Ta), carcinoma in situ (CIS), and 

high-grade T1 tumors), muscle-invasive subtypes, and metastatic BC 

(2). This classification is important since urologists must adopt various 

treatment strategies (3). Transurethral resection of bladder tumors along 

with intravesical instillation of Bacillus Calmette-Guérin (BCG) are the 

two main treatment approaches for low-grade Ta, CIS, and high-grade 

T1 non-muscle-invasive subtypes. Despite the risk of recurrence, these 

approaches are effective in several cases. However, radical cystectomy 

is preferred for patients with high-grade muscle-invasive BC. Indeed, 

the diagnostic time for BC and its progression are determining factors 

in the management of BC. In other words, patients diagnosed at early 

stages have a higher chance of successful treatment (3,4). 

BC is often diagnosed accidentally through urinary cytology in 

patients presenting with hematuria, which is a common symptom caused 

by various pathological conditions such as urinary system stones, 

urinary tract infections, and malignancy (5). However, most cases are 

asymptomatic in the early stages and therefore lose the “golden time” 

for optimal management. To the best of our knowledge, BC lacks any 

specific biomarker for diagnosis or treatment monitoring. Most patients 

are identified through imaging, cystoscopy, and urinary cytology. 

However, these techniques have limitations such as low specificity and 

invasiveness. Although traditional methods are widely used in clinical 

practice, many have significant limitations, including insufficient 

Highlights 

What is current knowledge? 
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sensitivity for early-stage tumors, invasiveness, and dependency on 

operator expertise. For instance, although urinary cytology is non-

invasive, it often fails to detect low-grade tumors, and cystoscopy is 

expensive and uncomfortable for patients. 

Multi-omics assessments are emerging as promising approaches for 

medical studies (6,7). It is well established that changes in gene 

expression occur at the onset of many physiological and pathological 

conditions. This means that comparing the transcriptome of patients 

with healthy individuals or conducting time-series analysis may help 

identify unique patterns useful for clinical applications. However, 

identifying such patterns, in addition to high costs, usually requires a 

sufficient sample size, advanced equipment, and technical expertise. 

Therefore, many researchers prefer not to use high-throughput 

techniques. 

The use of reliable data repositories, such as The Cancer Genome 

Atlas (TCGA), is a valuable alternative to high-throughput laboratory 

approaches (8). TCGA comprises a comprehensive repository including 

gene expression data, mutation profiles, technical details, and clinical 

information for each sample. Depending on the research objective, these 

data allow the identification of exclusive features that, along with 

laboratory validation, can be used for scientific purposes. However, a 

major challenge is the high-dimensional transcriptomic data obtained 

from laboratory sequencing or genomic databases like TCGA, which 

often present researchers with large and complex matrices of genes and 

samples (9,10). Therefore, their interpretation to identify differentially 

expressed genes (DEGs) requires precise statistical software and 

machine learning algorithms. 

Given the limitations of conventional diagnostic approaches and the 

challenges of interpreting high-dimensional data, there is an essential 

need for alternative diagnostic methods that are both precise and 

minimally invasive. In this context, machine learning (ML) models 

trained on transcriptome data offer a promising avenue for identifying 

reliable biomarkers and enhancing early detection of bladder cancer. 

Advanced analytical approaches, such as ML algorithms developed 

based on accurate historical data, clinical information, and high-

throughput datasets, facilitate the identification of important biomarkers 

that may improve diagnostic accuracy and treatment outcomes (11,12). 

ML algorithms serve as valuable toolkits for the efficient and accurate 

diagnosis and therapeutic monitoring of diseases. In one ML technique-

supervised learning-a large amount of data is used as input for a 

predefined target feature, training the algorithm to identify unique 

patterns that predict disease outcomes or detect accurate panels of 

diagnostic biomarkers (13). 

Recent advancements in data mining, high-throughput repositories, 

and mathematical modeling, including ML algorithms, have provided 

clinicians with new perspectives for transforming personalized 

medicine (14,15). C5.0 and CHAID are two well-established machine 

learning classification algorithms used for diagnostic purposes. C5.0 is 

recognized for high accuracy, the ability to process large datasets, and 

its production of interpretable decision trees with minimal overfitting. 

CHAID, on the other hand, is effective in uncovering statistically 

significant relationships between variables, particularly in categorical 

data analysis. Therefore, both algorithms appear suitable for gene 

expression profiling and developing robust diagnostic models for 

bladder cancer. These approaches leverage multi-omics data to identify 

candidate biomarkers associated with enhanced diagnostic accuracy and 

treatment outcomes based on individual genetic profiles (16). 

Objectives 

In this study, regarding the importance of transcriptome analysis, we 

aimed to utilize machine learning algorithms to investigate candidate 

genes that are differentially expressed in bladder cancer patients. In 

clinical settings, this approach may assist physicians in personalized 

medicine. 
 

Methods 
Data source and pre-processing 

The gene expression profiles of 412 primary tumor tissues of BC versus 

19 solid normal bladder tissues were obtained from The Cancer Genome 

Atlas (TCGA) database with the specific project ID “TCGA-BLCA”. 

The inclusion criteria for selecting tumor samples were as follows: (1) 

Primary bladder tumor tissue samples with available RNA-sequencing 

data in FPKM format, and (2) complete clinical metadata including age, 

gender, tumor stage, and survival status. Normal samples included 

histologically confirmed solid normal bladder tissues from non-

cancerous individuals within the TCGA-BLCA cohort. Samples were 

excluded if they were metastatic or recurrent tumor tissues. Other 

exclusion criteria included incomplete expression profiles, incomplete 

metadata, or missing clinical information. 

Expression data analysis to identify differentially expressed genes 

(DEGs) and generate data matrices was executed using R software (R 

Foundation for Statistical Computing, Vienna, Austria). The dataset, 

named TCGA-BLCA, was obtained using the “GDCquery” function 

from the TCGAbiolinks R package in count format. After excluding 

samples with incomplete metadata or missing expression count data, 

missing values for categorical variables in the remaining samples were 

addressed using automatic imputation in SPSS Modeler. Normalization 

of expression data was performed to adjust for differences in sequencing 

depth and gene length using the fragments per kilobase of transcript per 

million (FPKM) method via the TCGAbiolinks package. These 

preprocessing steps were implemented to enhance sample comparability 

and improve the robustness of subsequent machine learning models. 

Basic clinical information, including gender, age at diagnosis, clinical 

stage, tumor grade, overall survival (OS) time, and survival status, was 

downloaded from the TCGA portal. 

Evaluation of DEGs and candidate RNAs for BC 

After identifying the DEGs, further investigations were performed 

regarding their corresponding proteins in terms of gene ontology (GO), 

including biological process, cellular component, and molecular 

function. In addition, pathway analysis to identify the most involved 

cellular pathways disrupted in BC was conducted using the Kyoto 

Encyclopedia of Genes and Genomes (KEGG). For gene identification, 

Ensembl gene IDs were used through the online g:Profiler tool 

(https://biit.cs.ut.ee/gprofiler/page/citing) (17). Both GO enrichment 

and KEGG analyses were performed using ShinyGO 

(http://bioinformatics.sdstate.edu/go/), a graphical online 

bioinformatics tool developed at South Dakota State University (18). 

Development and evaluation of ML models 

Machine learning (ML) models were developed using a supervised 

learning approach in IBM SPSS Modeler 18.1 software. The data were 

randomly partitioned into three subgroups consisting of 70%, 20%, and 

10% of the dataset. Diagnostic models for BC were constructed using 

the first 70% of the data as the training set and evaluated using the 

subsequent 20% as the testing set. 

Feature selection was performed in three steps: Screening, ranking, 

and selection. The process began with screening expression data, where 

variables with low variance and non-informative features were 

eliminated. In the next step, ranking was conducted based on chi-square 

statistical results, and the top 150 genes were selected according to their 

cumulative contribution to model performance. The threshold of 150 

genes was empirically set to balance dimensionality reduction with 

maintaining diagnostic accuracy. 

Two widely used binary classification algorithms, C5.0 and CHAID, 

were employed to establish the diagnostic models. The rationale for 

selecting these algorithms was their demonstrated effectiveness in 

categorizing high-dimensional datasets, which is a key characteristic of 

transcriptomic data. The remaining 10% subgroup was utilized to 

validate the efficacy of the constructed models using key metrics for 

binary classification (19). 

The C5.0 algorithm was developed with the default boosting option 

enabled, with a maximum of 10 boosting trials. Pruning severity was set 

at 75 to mitigate overfitting. For the CHAID model, a significance level 

of 0.05 was applied for both splitting and merging criteria. The 

minimum number of cases for parent and child nodes was set at 10 and 

5, respectively. Missing values were handled using automatic 

imputation. These configurations were chosen to maintain a balance 

between model complexity and generalizability while ensuring 

interpretability. 
 

Results 
The study included gene expression profiles of 412 primary tumor 

tissues of BC versus 19 solid normal bladder tissues. The results of basic 

clinical information, including gender, primary diagnosis, age at 

diagnosis, history of prior malignancy, history of prior treatment, and 

survival status, are demonstrated in Table 1. 
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Enrichment analysis and identifying biological pathways involved 

in BC 

Enrichment analysis of DEGs is demonstrated in Figure 1. Based on the 

results, in terms of biological processes (Figure 1A), most of the 

identified genes are involved in myofibril assembly, striated muscle cell 

development, regulation of smooth muscle contraction, and cellular 

component assembly involved in morphogenesis. The cellular 

components of most DEGs include costamere, myofilament, striated 

muscle thin filaments, stress fibers, and contractile actin filament 

bundles (Figure 1B). In terms of molecular function, most of the 

identified DEGs contribute to tropomyosin binding, structural 

constituents of muscle, vinculin binding, and calcium-activated 

potassium channel activity (Figure 1C). 

The results of biological pathways associated with the identified 

DEGs are demonstrated in Figure 2. According to the KEGG database, 

most DEGs are involved in the calcium signaling pathway, regulation of 

the actin cytoskeleton, and circadian entrainment. 

Differentially Expressed Genes (DEGs) analysis and feature 

selection 

A total of 32,765 Ensembl stable IDs were considered as input for 

developing the diagnostic model. Due to the high dimensionality of the 

input data, a feature selection algorithm was used. This algorithm 

consists of three main steps: Screening, ranking, and selecting. The 

overall workflow included removing unimportant inputs, sorting the 

remaining inputs based on their importance, and selecting the top 

informative features. Following the screening step, 8,729 DEGs were 

ranked, and the top 150 were selected for developing the models. 

Table 1. Basic clinical and demographical information of bladder cancer 

patients 

Feature N (%) 

Gender 

Male 303 (74.08) 

Female 106 (25.92) 

Primary diagnosis 

Transitional cell carcinoma 343 (83.86) 

Papillary transitional cell carcinoma 66 (16.14) 

Age at diagnosis (Years) 

34.38 to ≤ 45.5 8 (1.96) 

45.51 to ≤ 56.63 46 (11.27) 

56.64 to ≤ 67.75 137 (33.58) 

67.76 to ≤ 78.87 143 (35.05) 

78.88 to ≤ 90 74 (18.14) 

Prior malignancy 

Yes 109 (26.65) 

No 300 (73.35) 

Prior treatment 

Yes 10 (2.44) 

No 399 (97.56) 

Survival status 

Alive 227 (55.64) 

Death 181 (44.36) 

 

A)  

 
B)  

 

C)  

 

Figure 1. Gene ontology terms of DEGs in bladder cancer 
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Figure 2. Biological pathways associated with DEGs in bladder cancer 
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C5.0 algorithm results 

The C5.0 algorithm, commonly associated with decision trees, can be 

effectively employed for conducting classification and DEG-related 

analyses on RNA sequencing (RNA-seq) data. This model was 

developed using two important RNAs: ENSG00000171368 and 

ENSG00000126218 (Figure 3). The model can be interpreted as 

follows: If the expression level of ENSG00000171368 < 4.066, the 

model diagnoses the sample as primary tumor. Otherwise, the 

expression level of ENSG00000126218 is considered. Diagnosis of BC 

is possible when ENSG00000171368 < 4.066 or when 

ENSG00000171368 > 4.066 along with ENSG00000126218 < 1.0601. 

The confusion matrix for the developed C5.0 model is represented in 

Table 2. 

 
CHAID algorithm results 

Chi-squared Automatic Interaction Detector (CHAID) is a decision-tree 

algorithm particularly useful for analyzing RNA-seq data and 

performing classification tasks in bioinformatics. This methodology 

employs significance testing using chi-square statistics to establish 

relationships between the dependent variable and independent variables 

by creating appropriate data splits. The CHAID model was developed 

using two important RNAs: ENSG00000123560 and 

ENSG00000228877 (Figure 4). It can be interpreted as follows: If 

ENSG00000123560 < 0.473, the model diagnoses the sample as 

primary tumor. Otherwise, the expression level of ENSG00000228877 

must be considered. Diagnosis of BC is possible when 

ENSG00000123560 < 0.473 or when ENSG00000123560 > 0.473 

along with ENSG00000228877 < 0.264. The confusion matrix for the 

developed CHAID model is represented in Table 2. 

The efficacy of the developed models for the diagnosis of BC was 

assessed using key metrics for binary classification. The evaluation 

metrics for training, testing, and validation datasets are shown in Table 

3. 

For the diagnosis of bladder cancer, it is essential to employ a 

method with high sensitivity to ensure detection at early stages and 

minimize false-negative results. High specificity is also important to 

reduce false positives and avoid unnecessary invasive interventions. 

Accuracy above 95% is generally considered ideal for clinical decision-

making. 

The observed metrics in both models suggest strong diagnostic 

potential, with CHAID showing particularly robust generalizability in 

the validation phase. In the training dataset, both C5.0 and CHAID 

models demonstrated good performance across all evaluation metrics. 

Although C5.0 demonstrated slightly higher sensitivity, accuracy, MCC, 

and no false negatives-indicating better diagnostic efficacy-the CHAID 

model performed better in testing and validation analyses, ultimately 

achieving 100% sensitivity and specificity with zero false results in the 

validation dataset. 

A ROC curve is useful for interpreting and evaluating the diagnostic 

performance of models. The overall accuracy, sensitivity, and specificity 

of the C5.0 model, along with its corresponding ROC curve, are 

represented in Figure 5A. Based on the figure, the C5.0 model 

demonstrates strong performance with accuracy = 98.61%, sensitivity = 

99.51%, and specificity = 78.94%, with only a small proportion of false 

results. The CHAID model achieved accuracy = 99.01%, sensitivity = 

99.76%, and specificity = 84.21% (Figure 5B). 

In general, both models performed well in the diagnosis of BC. 

Based on the models, four RNAs - ENSG00000171368, 

ENSG00000126218, ENSG00000123560, and ENSG00000228877 - 

were identified as important diagnostic classifiers for bladder cancer. 

 

Figure 3. Schematic diagram of the C5.0 algorithm 

Table 2. The confusion matrix for all training, test, and validation data 

Dataset Tissue type 
CHAID C5 

Total 
Primary tumor Solid normal tissue Primary tumor Solid normal tissue 

Train 
Primary tumor 292 1 293 0 293 

Solid normal tissue 2 11 2 11 13 

Test 
Primary tumor 78 0 76 2 78 

Solid normal tissue 1 1 1 1 2 

Validation 
Primary tumor 41 0 41 0 41 

Solid normal tissue 0 4 1 3 4 
 

 
Figure 4. Schematic diagram for the CHAID algorithm 
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Table 3. The evaluation metrics for data mining models 

Training data 

Measure CHAID C 5.0 

Sensitivity 99.66 1.00 

Specificity 84.62 84.62 

False negative rate 0.34 0.00 

False positive rate 15.38 15.38 

Negative predictive value 91.67 1.00 

Positive predictive value 99.32 99.32 

Accuracy 99.02 99.35 

F1 score 99.49 99.66 

Matthew’s correlation coefficient 87.57 91.67 

Testing data 

Sensitivity 100.00 97.44 

Specificity 50.00 50.00 

False negative rate 0.00 2.56 

False positive rate 50.00 50.00 

Negative predictive value 100.00 33.33 

Positive predictive value 98.73 98.70 

Accuracy 98.75 96.25 

F1 score 99.36 98.06 

Matthew’s correlation coefficient 70.26 38.98 

Validation data 

Sensitivity 100.00 100.00 

Specificity 100.00 75.00 

False negative rate 0.00 0.00 

False positive rate 0.00 0.25 

Negative predictive value 100.00 100.00 

Positive predictive value 100.00 97.62 

Accuracy 100.00 97.78 

F1 score 100.00 98.80 

Matthew’s correlation coefficient 100.00 85.57 

 

 

A) C 5.0 

 

Summary of statistics Points for plotting 

Number of cases 431 FP rate TP rate 

Number of correct 425 0.0000 0.0000 

Accuracy (%) 98.61 0.0000 0.0000 

Sensitivity (%) 99.51 0.0049 0.7895 

Specificity (%) 78.94 0.9782 1.0000 

Positive case missing 2 1.0000 1.0000 

Negative case missing 4   

B) CHAID 

 

Summary of statistics Points for plotting 

Number of cases 431 FP rate TP rate 

Number of correct 427 0.0000 0.0000 

Accuracy 99.01 0.0000 0.0000 

Sensitivity 99.76 0.0024 0.8421 

Specificity 84.21 0.051 1.0000 

Positive case missing 1 1.0000 1.0000 

Negative case missing 3   

Figure 5. ROC curve information for C5.0 and CHAID models 
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Discussion 

The present research aimed to improve diagnostic accuracy and 

personalized medicine by identifying differentially expressed genes 

(DEGs) that can serve as biomarkers for BC. Gene expression data were 

obtained from The Cancer Genome Atlas (TCGA) database and 

evaluated using supervised machine learning (ML) algorithms. The 

results indicated that both the C5.0 and CHAID models performed well 

in diagnosing BC, with the C5.0 model showing slightly better 

performance in the training data and the CHAID model performing 

better in the testing and validation phases. The CHAID model achieved 

100% sensitivity and specificity in the validation data, with no false 

results. The study identified four important RNAs (ENSG00000171368, 

ENSG00000126218, ENSG00000123560, and ENSG00000228877) 

that are crucial for BC diagnosis. 

Tubulin polymerization promoting protein (TPPP), 

ENSG00000171368, also known as p25, is one of the identified 

important classifiers in the diagnosis of BC (20). In terms of gene 

ontology, TPPP is enriched in the nucleus, cytoskeleton, microtubules, 

and mitotic spindles, and it exhibits metal ion binding, protein 

dimerization, and GTPase activities, as well as microtubule and tubulin 

formation. It encompasses various biological processes such as 

microtubule organization, cell proliferation, and regulation of protein-

containing complex assembly. According to previous studies, TPPP is 

important in several conditions, including colorectal cancer 

development, oral squamous cell carcinoma, neurodegenerative 

diseases, oligodendrocyte differentiation, microtubule dysfunction in 

cystic fibrosis, and multiple sclerosis (21,22). Its importance in 

colorectal cancer progression is related to promoting cell proliferation, 

migration, and invasion. However, we could not find any previous study 

focusing on the expression changes of TPPP in bladder cancer. 

Coagulation factor X, ENSG00000126218, encoded by the F10 

gene, is another important classifier identified for BC diagnosis. In 

terms of gene ontology, coagulation factor X is involved in biological 

processes associated with the coagulation system, including regulation 

of blood coagulation and hemostasis. It is located in the extracellular 

space and blood microparticles and is functionally important in serine-

type endopeptidase activity, calcium ion binding, and vitamin K 

binding. The gene encodes a serine protease that plays a crucial role in 

the coagulation cascade and hemostasis. Upon activation, it converts 

prothrombin to thrombin, which helps form fibrin clots to stop bleeding. 

We did not find any previous research indicating a direct association 

between expression levels of F10 and bladder cancer. A probable link 

between coagulation factors and cancer is the ability of cancer cells to 

induce a procoagulant state, resulting in activation of the coagulation 

cascade, which may support tumor spread and metastasis. A study on 

BC patients reported elevated fibrinogen levels compared to healthy 

individuals; suggesting that evaluating coagulation factors may 

potentially serve as screening or prognostic markers in cancer research 

(23). 

Proteolipid Protein 1 (PLP1), also known as GPM6C and SPG2, is 

primarily known for its role in the central nervous system, particularly 

in myelination and acute myeloid leukemia (24). It is encoded by the 

PLP1 gene on the X chromosome (ENSG00000123560) and is one of 

the important classifiers identified in this study. In the context of bladder 

cancer, PLP1 is not typically investigated, however, a possible 

association with BC has been reported through bioinformatic analysis 

(25). The other important classifier identified is ENSG00000228877, 

also known as RP11-473E2. It refers to a long intergenic non-coding 

RNA whose functional role has not yet been fully identified. 

Although the diagnostic models developed in this research 

demonstrated excellent performance metrics, it is important to 

acknowledge that these findings are exclusively based on in silico 

analyses and computational modeling using publicly available 

transcriptomic data. We did not validate these results through wet-lab or 

clinical experiments to confirm the biological relevance of the identified 

biomarkers in bladder cancer patients. However, this limitation does not 

undermine the robustness of our computational findings, rather, it 

highlights the need for future studies using experimental techniques. 

Further investigation will enhance our understanding across different 

pathological and physiological contexts. 

 

Conclusion 

In conclusion, the potential application of ML algorithms in identifying 

DEGs for BC diagnosis was investigated in this manuscript, which may 

contribute to better management and treatment outcomes for patients. 

Further investigations through laboratory validation of the results will 

provide deeper insights into the diagnosis of bladder cancer. 
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